Как определить делится ли число на 4. Старт в науке. Признаки делимости натуральных чисел

Данный материал посвящен такому понятию, как признак делимости на 2 . В первом пункте мы сформулируем его и приведем примеры – задачи, в которым нужно выяснить, делится ли конкретное число на 2 . Затем мы докажем этот признак и поясним, какие еще существуют методы определения делимости на два чисел, заданных в виде значения выражений.

Формулировка и примеры признака делимости на 2

Чтобы лучше понять, что такое признаки делимости, нужно повторить тему, связанную с делимостью целых чисел. Определение основного понятия выглядит так:

Определение 1

Целое число, которое заканчивается цифрами 8 , 6 , 4 , 2 и 0 , может быть разделено на 2 без остатка. Если в конце числа стоит цифра 9 , 7 , 5 , 3 или 1 , то такое число делимостью на 2 не обладает.

С помощью данного признака можно выявить делимость не только целого положительного (натурального), но и целого отрицательного числа, поскольку они тоже могут быть разделены на 2 без остатка.

Приведем несколько примеров использования признака в задачах.

Пример 1

Условие: определите, какие из чисел 8 , − 946 , 53 , 10 900 , − 988 123 761 можно разделить на два.

Решение

Разумеется, мы можем просто разделить все эти числа на два в столбик и проверить, будет ли в конце остаток или нет. Но зная признак делимости на два, можно решить эту задачу гораздо быстрее.

Три числа из перечисленных, а именно 8 , - 946 и 10 900 , имеют в конце цифры 8 , 6 и 0 , значит, их деление на 2 возможно.

Остальные числа (53 и − 988 123 761) заканчиваются на 3 и 1 , значит, нацело на два они не делятся.

Ответ: на два можно разделить 8 , − 946 и 10 900 , а все прочие заданные числа нельзя.

Этот признак широко используется в задачах, где нужно раскладывать число на простые множители. Решим один такой пример.

Пример 2

Условие: выполните разложение 352 на простые множители.

Решение

Поскольку последняя цифра в исходном числе – 2 , то согласно признаку делимости, мы можем разделить его на два без остатка. Сделаем это: 352: 2 = 176 , а 352 = 2 · 176 . Полученное число 176 тоже делится на два: 176: 2 = 88 , а 176 = 2 · 88 . Это число тоже можно разделить: 88: 2 = 44 , 88 = 2 · 44 и 352 = 2 · 2 · 88 = 2 · 2 · 2 · 44 . Продолжаем разложение: 44: 2 = 22 и 44 = 2 · 22 , следовательно, 352 = 2 · 2 · 2 · 44 = 2 · 2 · 2 · 2 · 22 ; потом 22: 2 = 11 , откуда 22 = 2 · 11 и 352 = 2 · 2 · 2 · 2 · 22 = 2 · 2 · 2 · 2 · 2 · 11 . Наконец мы дошли до числа, которое на 2 не делится. Таблица простых чисел говорит нам, что это число является простым, значит, на этом разложение на множители заканчивается.

Ответ: 352 = 2 · 2 · 2 · 2 · 2 · 11 .

Деление чисел на четные и нечетные основано как раз на том, делятся ли они на 2 или нет. Зная этот признак делимости, можно сказать, что все четные числа имеют в конце цифру 0 , 2 , 4 , 6 или 8 , а все нечетные – 1 , 3 , 5 , 7 или 9 .

Как можно доказать признак делимости на 2

Перед тем, как перейти непосредственно к доказательству этого признака, нам надо доказать дополнительное утверждение. Оно формулируется так:

Определение 2

Все натуральные числа, которые заканчиваются на нуль, могут быть разделены на два без остатка.

Пользуясь правилом умножения натурального числа на 10 , мы можем представить некое число a как a = a 1 · 10 . Число a 1 , в свою очередь, получится из a , если убрать у него последнюю цифру.

Приведем примеры такого действия: 470 = 47 · 10 , где a = 470 и a 1 = 47 ; или же 38 010 · 10 , здесь a = 380 100 и a 1 = 38 010 . Второй множитель в этом произведении (10) может быть разделен на 2 , значит, все произведение может быть разделено на 2 . Это утверждение основано на соответствующем свойстве делимости.

Переходим к доказательству признака делимости на 2 . Чтобы было удобнее, представим его как теорему, т.е. как необходимое и достаточное условие делимости целого числа на два.

Теорема 1

Для деления целого числа a на два необходимым и достаточным условием является наличие последней цифры 0 , 2 , 4 , 6 или 8 .

Доказательство 1

Как доказать это утверждение? Для начала представим исходное число a в виде суммы десятков и единиц, т.е. запишем его как a = a 1 · 10 + a 0 . Здесь a 1 будет числом, получившимся из a при устранении последней цифры, а a 0 соответствует последней цифре данного числа (примерами такого представления также могут быть выражения 49 = 4 · 10 + 9 , 28 378 = 2 837 · 10 + 8). Произведение a 1 · 10 , взятое из равенства a = a 1 · 10 + a 0 , всегда будет делиться на два, что и показано с помощью этой теоремы.

Остальная часть доказательства основана на определенном свойстве делимости, а именно: если у нас есть три числа, образующие равенство t = u + v , и два из них делятся на целое число z , то и третье число также можно разделить на z .

Если a можно разделить на два, то согласно этому свойству, а также представлению a = a 1 · 10 + a 0 , число a 0 будет делиться на два, а такое возможно, только если a 0 = 0 , 2 , 4 , 6 или 8 .

А если a на 2 не делится, то исходя из того же самого свойства, число a 0 на 2 тоже делиться не будет, что возможно только при a 0 = 1 , 3 , 5 , 7 или 9 . Это и есть нужное нам доказательство необходимости.

Теперь разберем обратную ситуацию. Если у нас есть число a , последней цифрой которого является число 0 , 2 , 4 , 6 или 8 , то a 0 делится на 2 . Указанное свойство делимости и представление a = a 1 · 10 + a 0 позволяют нам заключить, что a делится на 2 . Если a имеет последнюю цифру 1 , 3 , 5 , 7 или 9 , то то a 0 не делится на 2 , значит, a тоже не делится на 2 , иначе само представление a = a 1 · 10 + a 0 делилось бы на 2 , что невозможно. Достаточность условия доказана.

В конце отметим, что числа с последней цифрой 1 , 3 , 5 , 7 или 9 при делении на два всегда дают в остатке единицу.

Возьмем случай, когда заданное число кончается одной из этих цифр. Тогда мы можем представить a как a = b + 1 , при этом число b будет иметь в качестве последней цифры 0 , 2 , 4 , 6 или 8 . В силу признака делимости на 2 число b можно разделить на 2 , значит, по определению делимости оно также может быть представлено в виде b = 2 · q , где q будет некоторым целым числом. Мы получили, что a = 2 · q + 1 . Данное представление показывает нам, что при делении числа a на 2 получается неполное частное q и остаток 1 (если нужно, перечитайте статью о делении целых чисел с остатком).

Прочие случаи определения делимости на 2

В этом пункте мы разберем те случаи, когда число, делимость которого на 2 нужно определить, не задано непосредственно, а определяется некоторым значением буквенного выражения. Здесь воспользоваться признаком, приведенным выше, мы не можем, и непосредственно разделить это выражение на 2 тоже невозможно. Значит, нужно найти какое-то другое решение.

Существует подход к решению таких задач, который основан на следующем свойстве делимости: произведение целых чисел можно разделить на некое число тогда, когда на него делится хотя бы один из множителей. Следовательно, если мы сможем преобразовать буквенное выражение в произведение отдельных множителей, один из которых делится на два, то тогда возможно будет доказать делимость на 2 и исходного выражения.

Чтобы преобразовать заданное выражение, мы можем воспользоваться формулой бинома Ньютона. Посмотрим такую задачу.

Пример 3

Условие: определите, можно ли разделить на 2 значение выражения 3 n + 4 n - 1 для некоторого натурального n .

Решение

Сначала запишем очевидное равенство 3 n + 4 n - 1 = 2 + 1 n + 4 n - 1 . Теперь берем формулу бинома Ньютона, применяем ее и упрощаем то, что у нас получилось:

3 n + 4 n - 1 = 2 + 1 n + 4 n - 1 = = C n 0 · 2 n + C n 1 · 2 n - 1 · 1 + ⋯ + C n n - 2 · 2 2 + 1 n - 2 + C n n · 2 + 1 n - 1 + C n n · 1 n + + 4 n - 1 = 2 n + C n 1 · 2 n - 1 + … + C n n - 2 · 2 2 + n · 2 + 1 + + 4 n - 1 = 2 n + C n 1 · 2 n - 1 + … + C n n - 2 · 2 2 + 6 n

В последнем равенстве выносим два за скобки и получаем следующее равенство:

3 n + 4 n - 1 = 2 · 2 n - 1 + C n 1 · 2 n - 2 + … + C n n - 2 · 2 + 3 n

В данном равенстве можно разделить правую часть на два при любом натуральном значении n , поскольку там есть множитель, равный 2 . Поскольку между выражениями стоит знак равенства, то выполнить деление на 2 можно и для левой части.

Ответ: данное выражение можно разделить на 2 .

Довольно часто доказать делимость можно с помощью метода математической индукции. Возьмем то же выражение, что и в примере выше, и покажем, как применить данный метод на практике.

Пример 4

Условие: выясните, будет ли выражение 3 n + 4 n - 1 делиться на 2 при любом натуральном значении n .

Решение

Используем математическую индукцию. Для начала докажем, что значение выражения 3 n + 4 n - 1 при n , равном единице, можно разделить на 2 . У нас получится 3 1 + 4 · 1 - 1 = 6 , шесть делится на два без остатка. Идем дальше. Возьмем n , равное k , и сделаем предположение, что 3 k + 4 k - 1 делится на два.

Используя данное предположение, докажем, что 3 n + 4 n - 1 можно разделить на 2 , если это возможно для 3 k + 4 k - 1 . Чтобы это доказать, нам нужно выполнить несколько преобразований.

3 · 3 k + 4 k - 1 делится на два, поскольку это возможно для 3 k + 4 k - 1 , выражение 2 · 4 k - 3 тоже можно поделить на 2 , потому что у него есть множитель 2 , значит, разность этих двух выражений тоже делится на 2 , что объясняется соответствующим свойством делимости.

Ответ : выражение 3 n + 4 n - 1 делится на 2 при любом натуральном n .

Отдельно остановимся на случае, когда в произведении рядом стоят два числа, идущие друг за другом в натуральном ряду чисел. Такое произведение тоже делится на два.

Пример 5

К примеру, выражение вида (n + 7) · (n − 1) · (n + 2) · (n + 6) делится на 2 при любом натуральном значении n , поскольку в нем есть числа, идущие в натуральном ряду друг за другом – это n + 6 и n + 7 .

Точно также при наличии двух множителей, между которыми расположено четное число членов натурального ряда, произведение может быть разделено на 2 . Так, на два делится значение (n + 1) · (n + 6) при любом натуральном n , поскольку между n + 5 и n + 6 расположено четное количество чисел: n + 2 , n + 3 , n + 4 и n + 5 .

Объединим все, о чем мы говорили в предыдущих пунктах. Если можно показать, что значение выражения делится на два при n = 2 · m , а также при n = 2 · m + 1 и произвольном целом m , то это будет доказательством делимости исходного выражения на 2 при любых целых значениях n .

Пример 6

Условие: выясните, делится ли на 2 выражение n 3 + 7 · n 2 + 16 · n + 12 при любых натуральных значениях n .

Решение

Сначала представим данное выражение в виде произведения (n + 2) 2 · (n + 3) . При необходимости повторите, как правильно раскладывать многочлен на множители. Мы имеем два множителя n + 2 и n + 3 , которые соответствуют числам, стоящим рядом в натуральном ряду. Одно из них в любом случае делится на 2 , значит, и все произведение тоже делится на 2 . То же относится и к исходному выражению.

У этой задачи есть и другое решение. Если n = 2 · m , то n + 2 2 · n + 3 = 2 m + 2 2 · 2 m + 2 2 = 4 · m + 1 2 · 2 m + 3 . Здесь есть множитель, равный четырем, благодаря чему все произведение будет делиться на 2 .

Если же n = 2 · m + 1 , то

(n + 2) 2 · n + 3 = 2 m + 1 + 2 2 · 2 m + 1 + 3 = 2 m + 3 2 · 2 m + 4 = = 2 m + 3 2 · 2 · 2

Здесь присутствует множитель 2 , значит, все произведение обладает делимостью на 2 .

Ответ: это и есть доказательство того, что выражение n 3 + 7 · n 2 + 16 · n + 12 = (n + 2) 2 · (n + 3) можно разделить на два при любом натуральном значении n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Математика в 6 классе начинается с изучения понятия делимости и признаков делимости. Часто ограничиваются признаками делимости на такие числа:

  • На 2 : последняя цифра должна быть 0, 2, 4, 6 или 8;
  • На 3 : сумма цифр числа должна делиться на 3;
  • На 4 : число, образованное последними двумя цифрами, должно делиться на 4;
  • На 5 : последняя цифра должна быть 0 или 5;
  • На 6 : число должно обладать признаками делимости на 2 и на 3;
  • Признак делимости на 7 часто пропускается;
  • Редко таже рассказывают и о признаке делимости на 8 , хотя он аналогичен признакам делимости на 2 и на 4. Чтобы число делилось на 8, необходимо и достаточно, чтобы трёхцифреное окончание делилось на 8.
  • Признак делимости на 9 знают все: сумма цифр числа должна делиться на 9. Что, правда, не развивает иммунитет против всяческих трюков с датами, которые используют нумерологи.
  • Признак делимости на 10 , наверное, самый простой: число должно оканчиваться нулём.
  • Иногда шестиклассникам рассказывают и о признаке делимости на 11 . Нужно цифры числа, стоящие на чётных местах сложить, из результата вычесть цифры, стоящие на нечётных местах. Если результат будет делиться на 11, то и само число делится на 11.
Вернёмся теперь к признаку делимости на 7. Если о нём рассказывают, тот объединяют с признаком делимости на 13 и советуют использовать так.

Берём число. Разбиваем его на блоки по 3 цифры в каждом (самый левый блок может содержать одну или 2 цифры) и попеременно складываем/вычитаем эти блоки.

Если результат делится на 7, 13 (или 11), то и само число делится на 7, 13 (илb 11).

Основан этот способ, как и ряд математических фокусов на том, что 7х11х13 = 1001. Однако что делать с трехзначными числами, для которых вопрос делимости, бывает, тоже не решить без самого деления.

Используя универсальный признак делимости , можно построить относительно простые алгоритмы определения, делится ли число на 7 и другие "неудобные" числа.

Усовершенствованный признак делимости на 7
Чтобы проверить, делится ли число на 7, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру дважды отнять. Если результат делится на 7, то и само число делится на 7.

Пример 1:
Делится ли на 7 число 238?
23-8-8 = 7. Значит, число 238 делится на 7.
Действительно, 238 = 34х7

Это действие можно проводить многократно.
Пример 2:
Делится ли на 7 число 65835?
6583-5-5 = 6573
657-3-3 = 651
65-1-1 = 63
63 делится на 7 (если бы мы этого не заметили, то могли бы сделать ещё 1 шаг: 6-3-3 = 0, а 0 уж точно делится на 7).

Значит, и число 65835 делится на 7.

На основе универсиального признака делимости, можно усовершенствовать признаки делимости на 4 и на 8.

Усовершенствованный признак делимости на 4
Если половина числа единиц в сумме с числом десятков - чётнное число, то число делится на 4.

Пример 3
Делится ли число 52 на 4?
5+2/2 = 6, число чётное, значит, число на 4 делится.

Пример 4
Делится ли число 134 на 4?
3+4/2 = 5, число нечётное, значит, 134 на 4 не делится.

Усовершенствованный признак делимости на 8
Если сложить удвоенное число сотен, число десятков и половину числа единиц, и результат будет делиться на 4, то само число делится на 8.

Пример 5
Делится ли число 512 на 8?
5*2+1+2/2 = 12, число делится на 4, значит, 512 делится на 8.

Пример 6
Делится ли число 1984 на 8?
9*2+8+4/2 = 28, число делится на 4, значит, 1984 делится на 8.

Признак делимости на 12 - это объединение признаков делимсоти на 3 и на 4. Это же работает и для любых n, являющихся произведением взаимнопростых p и q. Чтобы число делилось на n (которое равно произведению pq,актих, что НОД(p,q)=1), одно должно делиться одновремено на p и на q.

Однако будьте внимательны! Чтобы работали составные признаки делимости, множители числа должны быть именно взаимнопростыми. Нельзая сказать, что число делится на 8, если оно делится на 2 и на 4.

Усовершенствованный признак делимости на 13
Чтобы проверить, делится ли число на 13, надо от числа отбросить последнюю цифру и к получившемуся результату её четырежды прибавить. Если результат делится на 13, то и само число делится на 13.

Пример 7
Делится ли на 8 число 65835?
6583+4*5 = 6603
660+4*3 = 672
67+4*2 = 79
7+4*9 = 43

Число 43 не делится на 13, значит, и число 65835 не делится на 13.

Пример 8
Делится ли на 13 число 715?
71+4*5 = 91
9+4*1 = 13
13 делится на 13, значит, и число 715 делится на 13.

Признаки делимости на 14, 15, 18, 20, 21, 24, 26, 28 и прочие составные числа, не являющиеся степенями простых, аналогичны признакам делимости на 12. Мы проверяем делимость на взаимно-простыем множители этих чисел.

  • Для14: на 2 и на 7;
  • Для 15: на 3 и на 5;
  • Для 18: на 2 и на 9;
  • Для 21: на 3 и на 7;
  • Для 20: на 4 и на 5 (или, по-другому, последняя цифра должна быть нулём, а предпоследняя - чётной);
  • Для 24: на 3 и на 8;
  • Для 26: на 2 и на 13;
  • Для 28: на 4 и на 7.
Усовершенствованный признак делимости на 16.
Вместо того, чтобы проверять, делится ли 4-циферное окончание числа на 16, можно сложить цифру единиц с увеличенной в 10 раз цифрой десятков, с учетверённой цифрой сотен и с
увеличенной в восемь раз цифрой тысяч, и проверить, делится ли результат на 16.

Пример 9
Делится ли число 1984 на 16?
4+10*8+4*9+2*1 = 4+80+36+2 = 126
6+10*2+4*1=6+20+4=30
30 не делится на 16, значит, и 1984 не делится на 16.

Пример 10
Делится ли число 1526 на 16?
6+10*2+4*5+2*1 = 6+20+20+2 = 48
48 не делитсся на 16, значит, и 1526 делится на 16.

Усовершенствованный признак делимости на 17.
Чтобы проверить, делится ли число на 17, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру пять раз отнять. Если результат делится на 13, то и само число делится на 13.

Пример 11
Делится ли число 59772 на 17?
5977-5*2 = 5967
596-5*7 = 561
56-5*1 = 51
5-5*5 = 0
0 делится на 17, значит и число 59772 делится на 17.

Пример 12
Делится ли число 4913 на 17?
491-5*3 = 476
47-5*6 = 17
17 делится на 17, значит и число 4913 делится на 17.

Усовершенствованный признак делимости на 19.
Чтобы проверить, делится ли число на 19, надо удвоенную последнюю цифру прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 13
Делится ли число 9044 на 19?
904+4+4 = 912
91+2+2 = 95
9+5+5 = 19
19 делится на 19, значит и число 9044 делится на 19.

Усовершенствованный признак делимости на 23.
Чтобы проверить, делится ли число на 23, надо последнюю цифру, увеличенную в 7 раз, прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 14
Делится ли число 208012 на 23?
20801+7*2 = 20815
2081+7*5 = 2116
211+7*6 = 253
Вообще-то, уже можно заметить, что 253 - это 23,

Признаки делимости

Замечание 2

Признаки делимости обычно применяют не к самому числу, а к числам, состоящим из цифр, которые участвуют в записи этого числа.

Признаки делимости на числа $2, 5$ и $10$ позволяют проверить делимость числа по одной лишь последней цифре числа.

Другие признаки делимости предполагают проведение анализа двух, трех или больше последних цифр числа. Например, признак делимости на $4$ требует анализа двузначного числа, которое составлено из двух последних цифр числа; признак делимости на 8 требует анализа числа, которое образовано тремя последними цифрами числа.

При использовании других признаков делимости необходимо проанализировать все цифры числа. Например, при использовании признака делимости на $3$ и признака делимости на $9$ необходимо найти сумму всех цифр числа, а затем проверить делимость найденной суммы на $3$ или на $9$ соответственно.

Признаки делимости на составные числа объединяют несколько других признаков. К примеру, признак делимости на $6$ представляет собой объединение признаков делимости на числа $2$ и $3$, а признак делимости на $12$ – на числа $3$ и $4$.

Применение некоторых признаков делимости требует проведения значительной вычислительной работы. В таких случаях может оказаться проще выполнить непосредственное деление числа $a$ на $b$, которое приведет к решению вопроса, можно ли разделить данное число $a$ на число $b$ без остатка.

Признак делимости на $2$

Замечание 3

Если последняя цифра целого числа делится на $2$ без остатка, то и число делится на $2$ без остатка. В других случаях данное целое число не делится на $2$.

Пример 1

Определить, какие из предложенных чисел делятся на $2: 10, 6 349, –765 386, 29 567.$

Решение .

Используем признак делимости на $2$, согласно которому можно сделать вывод, что на $2$ без остатка делятся числа $10$ и $–765 \ 386$, т.к. последней цифрой данных чисел является число $0$ и $6$ соответственно. Числа $6 \ 3494$ и $29 \ 567$ не делятся на $2$ без остатка, т.к. последняя цифра числа $9$ и $7$ соответственно.

Ответ : $10$ и $–765 \ 386$ делятся на $2$, $6 \ 349$ и $29 \ 567$ не делятся на $2$.

Замечание 4

Целые числа по результату их делимости на $2$ делят на четные и нечетные .

Признак делимости на $3$

Замечание 5

Если сумма цифр целого числа делится на $3$, то и само число делится на $3$, в других случаях число на $3$ не делится.

Пример 2

Проверить, делится ли число $123$ на $3$.

Решение .

Найдем сумму цифр числа $123=1+2+3=6$. Т.к. полученная сумма $6$ делится на $3$, то по признаку делимости на $3$ число $123$ делится на $3$.

Ответ : $123⋮3$.

Пример 3

Проверить, делится ли число $58$ на $3$.

Решение .

Найдем сумму цифр числа $58=5+8=13$. Т.к. полученная сумма $13$ не делится на $3$, то по признаку делимости на $3$ число $58$ не делится на $3$.

Ответ : $58$ не делится на $3$.

Иногда для проверки делимости числа на 3 нужно несколько раз применить признак делимости на $3$. Обычно такой подход используется в случае применения признаков делимости к очень большим числам.

Пример 4

Проверить, делится ли число $999 \ 675 \ 444$ на $3$.

Решение .

Найдем сумму цифр числа $999 \ 675 \ 444 = 9 + 9 + 9 + 6 + 7 + 5 + 4 + 4 + 4 = 27 + 18 + 12 = 57$. Если по полученной сумме сложно сказать, делится ли она на $3$, нужно еще раз применить признак делимости и найти сумму цифр полученной суммы $57=5+7=12$. Т.к. полученная сумма $12$ делится на $3$, то по признаку делимости на $3$ число $999 \ 675 \ 444$ делится на $3$.

Ответ : $999 \ 675 \ 444 ⋮3$.

Признак делимости на $4$

Замечание 6

Целое число делится на $4$, если число, которое составлено из двух последних цифр данного числа (в порядке их следования) делится на $4$. В обратном случае данное число не делится на$4$.

Пример 5

Проверить, делятся ли числа $123 \ 567$ и $48 \ 612$ на $4$.

Решение .

Двухзначное число, которое составлено из двух последних цифр числа $123 \ 567$, составляет $67$. Число $67$ не делится на $4$, т.к. $67\div 4=16 (ост. 3)$. Значит и число $123 \ 567$ согласно признаку делимости на $4$ не делится на $44.44.

Двухзначное число, которое составлено из двух последних цифр числа $48 \ 612$, составляет $12$. Число $12$ делится на $4$, т.к. $12\div 4=3$. Значит и число $48 \ 612$ согласно признаку делимости на $4$ делится на $4$.

Ответ : $123 \ 567$ не делится на $4, 48 \ 612$ делится на $4$.

Замечание 7

Если двумя последними цифрами заданного числа являются нули, то число делится на $4$.

Такой вывод делается вследствие того, что данное число делится на $100$, а т.к. $100$ делится на $4$, то и число делится на $4$.

Признак делимости на $5$

Замечание 8

Если последней цифрой целого числа является $0$ или $5$, то данное число делится на $5$ и не делится на $5$ во всех остальных случаях.

Пример 6

Определить, какие из предложенных чисел делятся на $5: 10, 6 349, –765 385, 29 567.$

Решение .

Используем признак делимости на $5$, согласно которому можно сделать вывод, что на $5$ без остатка делятся числа $10$ и $–765 385$, т.к. последней цифрой данных чисел является число $0$ и $5$ соответственно. Числа $6 \ 349$ и $29 \ 567$ не делятся на $5$ без остатка, т.к. последняя цифра числа $9$ и $7$ соответственно.

Признак делимости

При́знак дели́мости - правило, позволяющее сравнительно быстро определить, является ли число кратным заранее заданному без необходимости выполнять фактическое деление. Как правило, основано на действиях с частью цифр из записи числа в позиционной системе счисления (обычно десятичной).

Существуют несколько простых правил, позволяющих найти малые делители числа в десятичной системе счисления:

Признак делимости на 2

Признак делимости на 3

Признак делимости на 4

Признак делимости на 5

Признак делимости на 6

Признак делимости на 7

Признак делимости на 8

Признак делимости на 9

Признак делимости на 10

Признак делимости на 11

Признак делимости на 12

Признак делимости на 13

Признак делимости на 14

Признак делимости на 15

Признак делимости на 17

Признак делимости на 19

Признак делимости на 23

Признак делимости на 25

Признак делимости на 99

Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101

Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

Признак делимости на 2 n

Число делится на n-ю степень двойки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 5 n

Число делится на n-ю степень пятёрки тогда и только тогда, когда число, образованное его последними n цифрами, делится на ту же степень.

Признак делимости на 10 n − 1

Разобьем число на группы по n цифр справа налево (в самой левой группе может быть от 1 до n цифр) и найдем сумму этих групп, считая их n-значными числами. Эта сумма делится на 10 n − 1 тогда и только тогда, когда само число делится на 10 n − 1 .

Признак делимости на 10 n

Число делится на n-ю степень десятки тогда и только тогда, когда n его последних цифр -

Еткарева Алина

Исследовательский учебный проект для 6 класса

Скачать:

Предварительный просмотр:

Районная научная конференция учащихся

Секция «Математика»

«Признаки делимости натуральных чисел »

Еткарева Алина,

Ученица 6 класса

ГБОУ СОШ ж.-д.ст. Погрузная

Научный руководитель:

Степанова Галина Алексеевна

учитель математики

ГБОУ СОШ ж.-д.ст. Погрузная

С. Кошки

Введение………………………………………………………………………...3

1. Глава 1. Немного истории …………………………………………….4 -5

2. Глава 2. Признаки делимости

2.1.Признаки делимости натуральных чисел на 2, на 3(9) на 5, на 10, изучаемые в школе……………………………………………………………….5-6

2.2. Признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000, полученные самостоятельно……………………………………………………..6-7

2.3. Признаки делимости на 7, 11, 12, 13, 14, 19, 37, описанные в разных источниках.............................................................................................................8-11

3.Глава 3. Применение признаков делимости натуральных чисел при решении задач...................................................................................................11-14

Заключение. …………………………………………………………..15

Список использованной литературы………………………………………16

Введение

Актуальность: При изучении темы: «Признаки делимости натуральных чисел на 2, 3, 5, 9, 10» меня заинтересовал вопрос о делимости чисел. Известно, что не всегда одно натуральное число делится на другое натуральное число без остатка. При делении натуральных чисел, мы получаем остаток, допускаем ошибки, в результате - теряем время. Признаки делимости помогают, не выполняя деления, установить, делится ли одно натуральное число на другое. Я решила написать исследовательскую работу по данной теме.

Гипотеза: Если можно определить делимость натуральных чисел на 2, 3, 5, 9, 10, то должны быть признаки, по которым можно определить делимость натуральных чисел и на другие числа.

Объект исследования: Делимость натуральных чисел.

Предмет исследования: Признаки делимости натуральных чисел.

Цель: Дополнить уже известные признаки делимости натуральных чисел нацело, изученные мною.

Задачи:

  1. Изучить историографию вопроса.
  2. Повторить признаки делимости на 2, 3. 5, 9, 10, изученные мною в школе.
  3. Исследовать самостоятельно признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000.
  4. Изучить дополнительную литературу, подтверждающую правильность гипотезы о существовании других признаков делимости натуральных чисел и правильность выявленных мной признаков делимости.
  5. Выписать найденные из дополнительной литературы признаки делимости натуральных чисел на 7, 11, 12, 13, 14, 19, 37.
  6. Сделать вывод.
  7. Составить слайдовую презентацию на тему: «Признаки делимости».
  8. Составить брошюру «Признаки делимости натуральных чисел».

Новизна:

В ходе выполнения проекта я пополнила свои знания о признаках делимости натуральных чисел.

Методы исследования: Сбор материала, обработка данных, наблюдение, сравнение, анализ, обобщение.

Глава 1. Немного из истории.

Признак делимости – это правило, по которому, не выполняя деления можно определить, делится ли одно натуральное число на другое. Признаки делимости всегда интересовали ученых разных стран и времен.

Признаки делимости на 2, 3, 5, 9, 10, были известны с давних времен. Признак делимости на 2 знали древние египтяне за 2 тысячи лет до нашей эры, а признаки делимости на 2, 3, 5 были обстоятельно изложены итальянским математиком Леонардо Фибоначчи (1170-1228г.г.).

При изучении темы: «Простые и составные числа» меня заинтересовал вопрос о составлении таблицы простых чисел, так как простые числа играют важную роль в изучении всех остальных чисел. Оказывается, над этим же вопросом в свое время задумался живший в 3 веке до нашей эры александрийский ученый Эратосфен. Его метод составления списка простых чисел назвали «решето Эратосфена». Пусть надо найти все простые числа до 100. Напишем подряд все числа до 100.

1 , 2, 3, 4, 5, 6, 7 , 8, 9, 10 , 11, 12 , 13, 14, 15, 16 , 17, 18 , 19, 20, 21, 22 , 23 , 24, 25, 26, 27, 28, 29, 30 , 31, 32, 33, 34, 35, 36, 37 , 38, 39, 40, 41 , 42, 43, 44, 45, 46 , 47, 48, 49, 50, 51, 52 , 53, 54, 55, 56, 57, 58, 59, 60 , 61 , 62, 63, 64, 65, 66 , 67, 68, 69, 70 , 71, 72, 73, 74, 75, 76, 77, 78 , 79, 80, 81, 82 , 83 , 84, 85, 86, 87, 88 , 89, 90, 91, 92, 93, 94, 95, 96 , 97, 98, 99, 100 .

Оставив число 2, зачеркнем все остальные четные числа. Первым уцелевшим числом после 2 будет 3. Теперь, оставив число 3, зачеркнем числа, делящиеся на 3. Затем зачеркнем числа, делящиеся на 5. В результате все составные числа окажутся вычеркнутыми и останутся только простые числа: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. По этому методу можно составлять списки простых чисел, больших 100.

Вопросы делимости чисел рассматривались пифагорейцами. В теории чисел ими была проведена большая работа по типологии натуральных чисел. Пифагорейцы делили их на классы. Выделялись классы: совершенных чисел (число равное сумме своих собственных делителей, например: 6=1+2+3), дружественных чисел (каждое из которых равно сумме делителей другого, например 220 и 284: 284=1+2+4+5+10+20+11+22+44+55+110; 220=1+2+4+71+142), фигурных чисел (треугольное число, квадратное число), простых чисел и др.

Блез Паскаль Пифагор. Леонардо Пизанский Эратосфен

(Фибоначчи)

Большой вклад в изучение признаков делимости чисел внес Блез Паскаль (1623-1662г.г.). Юный Блез очень рано проявил выдающиеся математические способности, научившись считать раньше, чем читать. Вообще, его пример - это классический случай детской математической гениальности. Свой первый математический трактат «Опыт теории конических сечений» он написал в 24 года. Примерно в это же время он сконструировал механическую суммирующую машинку, прообраз арифмометра. В ранний период своего творчества (1640-1650г.г.) разносторонний ученый нашел алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число, из которого следуют все частные признаки. Его признак состоит в следующем: Натуральное число а разделится на другое натуральное число b только в том случае, если сумма произведений цифр числа a на соответствующие остатки, получаемые при делении разрядных единиц на число b, делится на это число.

Т.о., признаки делимости были известны с давних времен и интересовали математиков.

Глава 2. Признаки делимости

2.1.Признаки делимости натуральных чисел, изучаемые в школе.

При изучении данной темы необходимо знать понятия делитель, кратное, простое и составное числа.

Делителем натурального числа а называют натуральное число b , на которое а делится без остатка.

Часто утверждение о делимости числа а на число b выражают другими равнозначными словами: а кратно b , b - делитель а , b делит а .

Простыми называются натуральные числа, которые имеют два делителя: 1 и само число. Например, числа 5,7,19 – простые, т.к. делятся на 1 и само себя.

Числа, которые имеют более двух делителей, называются составными. Например, число 14 имеет 4 делителя: 1, 2, 7, 14, значит оно составное.

Т.о…..

2.2.Признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000, полученные самостоятельно .

Выполняя действия деления, умножения натуральных чисел, наблюдая за результатами действий, я нашла закономерности и получила следующие признаки делимости.

Признак делимости на 4.

25·4=1 00 ; 56·4=2 24 ; 123·4=4 92 ; 125·4=5 00 ; 2345·4=93 80 ; 2500·4=100 00 ;

Умножая натуральные числа на 4, я заметила, что числа, образованные из двух последних цифр числа, делятся на 4 без остатка.

Признак делимости на 4 читается так: Натуральное ч

Признак делимости на 6.

Заметим, что 6=2·3 Признак делимости на 6 : Если натуральное число одновременно делится на 2 и на 3, то оно делится на 6.

Примеры:

216 делится на 2 (оканчивается 6) и делится на 3 (8+1+6=15, 15׃3), значит, число делится на 6.

Признак делимости на 8.

Умножая натуральное число на 8, я заметила такую закономерность, числа оканчиваются на три 0-ля или три последние цифры составляют число, которое делится на 8.

Значит, признак таков. Натуральное ч

Признак делимости на 15.

Заметим, что 15=3·5

Примеры:

Признак делимости на 25.

Выполняя умножение натуральных различных чисел на 25, я увидела такую закономерность: произведения оканчиваются на 00, 25, 50, 75.

Значит, натуральное число делится на 25, если оканчивается на 00, 25, 50, 75.

Признак делимости на 50.

На 50 делятся числа: 50, 1

Значит, натуральное число делится на 50 тогда и только тогда, когда оканчивается двумя нулями или 50.

Если в конце натурального числа стоят столько же нулей сколько в разрядной единице, то это число делится на эту разрядную единицу.

Примеры:

25600 делится на 100, т.к. числа оканчиваются на одинаковое количество нулей. 8975000 делится на 1000, т.к. оба числа оканчиваются на 000.

Т.о., выполняя действия с числами и подмечая закономерности, я сформулировала признаки делимости и из дополнительной литературы нашла подтверждение правильности сформулированных мною признаков делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000.

2.3.Признаки делимости натуральных чисел на 7, 11, 12, 13, 14, 19, 37, описанные в различных источниках.

Из дополнительной литературы я нашла несколько признаков делимости натуральных чисел на 7.

П ризнаки делимости на 7:

Примеры:

479345 не делится на 7, т.к. 479-345=134, 134 не делится на 7.

Примеры:

4592 делится на 7, т.к. 45·2=90, 90+92=182, 182 делится на 7.

57384 не делится на 7, т.к. 573·2=1146, 1146+84=1230,1230 не делится на 7

аbа

Примеры:

bаа

Примеры:

ааb

Примеры:

bаа

Примеры:

Примеры:

Примеры:

10׃7=1 (ост 3)

100׃7=14 (ост 2)

1000׃7=142 (ост 6)

10000׃7=1428 (ост 4)

100000׃7=14285 (ост 5)

6 +3· 2 +1· 3 +6=21, 21/7(6-ост. от деления 1000 на 7; 2-ост. от деления 100 на 7; 3- ост. от деления 10 на 7).

Число 354722 не делится на7,т.к. 3·5+5·4+4·6+7·2+2·3+2=81, 81 не делится на 7(5-ост. от деления 100 000 на 7; 4 -ост. от деления 10 000 на 7; 6-ост. от деления 1000 на 7; 2-ост. от деления 100 на 7; 3-ост. от деления 10 на 7).

Признаки делимости на 11.

Пример:

2 1 3 5 7 0 4

1 3 5 2 7 3 6

Примеры:

Признак делимости на 12.

Примеры:

Признаки делимости на 13.

Примеры:

Примеры:

Признак делимости на 14.

Примеры:

Число 35882 делится на 2 и на 7, значит, оно делится на 14.

Признак делимости на 19.

Примеры:

153 4

182 4 182+4·2=190, 190/19, значит, число 1824/19.

Признаки делимости на 37 .

Пример:

Т.о., в се перечисленные признаки делимости натуральных чисел можно разделить на 4 группы:

1группа- когда делимость чисел определяется по последней(им) цифрой (ми) – это признаки делимости на 2, на 5,на разрядную единицу, на 4, на 8, на 25, на 50;

2 группа – когда делимость чисел определяется по сумме цифр числа – это признаки делимости на3, на 9, на 7(1 признак), на 11, на 37;

3 группа – когда делимость чисел определяется после выполнения каких-то действий над цифрами числа – это признаки делимости на 7, на 11, на 13, на 19;

4 группа – когда для определения делимости числа используются другие признаки делимости –это признаки делимости на 6, на12, на 14, на 15.

Глава 3. Применение признаков делимости натуральных чисел при решении задач.

Признаки делимости применяются при нахождении НОД и НОК, а также при решении текстовых задач на применении НОД и НОК.

Задача 1:

Ученики 5 класса купили 203 учебника. Каждый купил одинаковое количество книг. Сколько было пятиклассников, и сколько учебников купил каждый из них?

Решение: Обе величины, которые требуется определить должны быть целыми числами, т.е. находиться среди делителей числа 203. Разложив 203 на множители, получаем: 203 = 1 ∙ 7 ∙ 29.

Из практических соображений .

Ответ :

Задача 2 .

Решение:

Ответ:

Задача 3: В 9 классе за контрольную работу 1/7 учеников получили пятёрки, 1/3 – четверки, 1/2 - тройки. Остальные работы оказались неудовлетворительными. Сколько было таких работ?

Решение:

Математические отношения задачи допускают, что число учеников в классе 84, 126 и т.д. человек. Но из соображений здравого смысла следует, что наиболее приемлемым ответом является число 42.

Ответ: 1 работа.

Задача 4.

Решение : В первом из этих классов могло быть: 17, 34, 51… - числа, кратные 17. Во втором классе: 9, 18, 27, 36, 45, 54… - числа, кратные 9. Нам нужно выбрать 1 число из первой последовательности, а 2 число из второй так, чтобы они в сумме давали 70. Причем в этих последовательностях только небольшое число членов могут выражать возможное количество детей в классе. Это соображение существенно ограничивает перебор вариантов. Возможным единственным вариантом оказалась пара (34, 36).

Ответ:

Задача 5.

Решение:

Ответ:

Задача 6. Два автобуса отправляются от одной площади по разным маршрутам. У одного из автобусов рейс туда и обратно длится 48 мин, а у другого 1 ч 12 мин. Через сколько времени автобусы снова встретятся на этой же площади?

Решение:

Ответ:

Задача 7 . Дана таблица:

Ответ:

Задача 8.

Ответ:

Задача 9.

Ответ:

Т.о, мы убедились в применении признаков делимости натуральных чисел при решении задач.

Заключение.

В процессе работы я познакомилась с историей развития признаков делимости. Сама правильно сформулировала признаки делимости натуральных чисел на 4, 6, 8, 15, 25, 50, 100, 1000., чему нашла подтверждение из дополнительной литературы. Рботая с разными источниками, я убедилась в том, что существуют другие признаки делимости натуральных чисел (на 7, 11, 12, 13, 14, 19, 37), что подтвердило правильность гипотезы о существовании других признаков делимости натуральных чисел.

Из дополнительной литературы нашла задачи, при решении которых применяются признаки делимости натуральных чисел.

Знание и использование выше перечисленных признаков делимости натуральных чисел значительно упрощает многие вычисления, экономит время; исключает вычислительные ошибки, которые можно сделать при выполнении действия деления. Следует отметить, что формулировки некоторых признаков сложноваты. Может быть, поэтому они не изучаются в школе.

Собранный мной материал я оформила в виде брошюры, которую можно использовать на занятиях математикой, на занятиях математического кружка. Учителя математики могут использовать его при изучении данной темы. Также рекомендую ознакомиться со своей работой тем сверстникам, которые хотят знать о математике больше, чем рядовой школьник.

В дальнейшем можно рассмотреть такие вопросы:

Вывод признаков делимости;

Выяснить,существуют ли еще признаки делимости, для исследования которых у меня не хватает пока знаний?

Список использованной литературы (источников):

  1. Галкин В.А. Задачи по теме «Признаки делимости ».// Математика, 1999.-№5.-С.9.
  2. Гусев В.А., Орлов А.И., Розенталь А.Л. Внеклассная работа по математике в 6-8 классах.- М.: Просвещение, 1984.
  3. Каплун Л.М. НОД и НОК в задачах. // Математика, 1999.- №7. – С. 4-6.
  4. Пельман Я.И. Математика – это интересно! – М.: ТЕРРА – Книжный клуб, 2006.
  5. Энциклопедический словарь юного математика./ Сост. Савин А.П. – М.: Педагогика, 1989. – С. 352.
  6. Internet

Признаки делимости

На 5.

Если число оканчивается на 0, 5.

На 2.

Если число оканчивается на 0, 2, 4, 6, 8

На 10.

Если число оканчивается на 0

На 3 (9).

Если сумма цифр числа делится на 3 (9).


Предварительный просмотр:

Ответ:

Задача 8.

Напишите какое – нибудь девятизначное число, в котором нет повторяющихся цифр (все цифры разные) и которое делится без остатка на 11. Напишите наибольшее из таких чисел, наименьшее из них.

Ответ: Наибольшее – 987652413, наименьшее – 102347586.

Задача 9.

Ваня задумал простое трехзначное число, все цифры которого различны. На какую цифру оно может оканчиваться, если его последняя цифра равна сумме первых двух. Приведите примеры таких чисел.

Ответ: Может оканчиваться только на цифру 7. Таких чисел 4: 167, 257, 347, 527.

Признак делимости на 2

Если натуральное число оканчивается на 2, 4, 6, 8, 0, то оно делится на 2 без остатка.

Признак делимости на 5.

Если число оканчивается на 0 или 5, то оно делится на 5 без остатка.

Признак делимости на 3

Если сумма цифр числа делится на 3, то и число делится на 3.

Примеры

684: 3, т. к. 6+ 8 + 4=18 , 18: 3, значит и число: на 3.

763 не: на3, т.к. 7+6+3=16, 16 не: на 3,значит 763 не: на 3.

Признак делимости на 9

Если сумма цифр числа делится на 9, то и само число делится на 9.

Примеры

765: 9, т. к. 7+6+5=18, 18: 9, значит 765: 9

881 не: на9, т.к. 8+8+1=17, 17 не: на 9, значит 881 не: на 9.

Признак делимости на 4.

25·4=1 00 ; 56·4=2 24 ; 123·4=4 92 ; 125·4=5 00 ; 2345·4=93 80 ; 2500·4=100 00 ; …

Натуральное ч исло делится на 4 тогда и только тогда, когда две его последние цифры 0 или образуют число, делящееся на 4.

Признак делимости на 6.

Заметим, что 6=2·3 Признак делимости на 6 :

Если натуральное число одновременно делится на 2 и на 3, то оно делится на 6.

Примеры:

816 делится на 2 (оканчивается 6) и делится на 3 (8+1+6=15, 15׃3), значит, число делится на 6.

625 не делится ни на 2, ни на 3, значит, не делится на 6.

2120 делится на 2 (оканчивается 0), но не делится на 3 (2+1+2+0=5, 5 не делится на 3), значит, число не делится на 6.

279 делится на 3 (2+7+9=18, 18:3), но не делится на 2 (оканчивается нечетной цифрой), значит, число не делится на 6.

Признак делимости на 7.

Ι. Натуральное число делится на 7 тогда и только тогда, когда разность числа тысяч и числа, выражаемого последними тремя цифрами, делится на 7.

Примеры:

478009 делится на 7, т.к. 478-9=469, 469 делится на 7.

475341 не делится на 7, т.к. 475-341=134, 134 не делится на 7.

ΙΙ. Натуральное число делится на 7, если сумма удвоенного числа, стоящего до десятков и оставшегося числа делится на 7.

Примеры:

4592 делится на 7, т.к. 45·2=90, 90+92=182, 182/7.

мин, а у другого 1 ч 12 мин. Через сколько времени автобусы снова встретятся на этой же площади?

Решение: НОК(48, 72) = 144 (мин). 144 мин = 2 ч 24 мин.

Ответ: Через 2 ч 24 мин автобусы снова встретятся на этой же площади.

Задача 7 . Дана таблица:

В пустые клетки впишите следующие числа: 17, 22, 36, 42, 88, 48, 57, 77, 81.

Решение : В первом из этих классов могло быть: 17, 34, 51… - числа, кратные 17. Во втором классе: 9, 18, 27, 36, 45, 54… - числа, кратные 9. Нам нужно выбрать 1 число из первой последовательности, а 2 число из второй так, чтобы они в сумме давали 70. Причем в этих последовательностях только небольшое число членов могут выражать возможное кол-во детей в классе. Это соображение существенно ограничивает перебор вариантов. Возможным единственным вариантом оказалась пара (34, 36).

Ответ: В первом классе – 34 ученика, во втором классе – 36 учеников.

Задача 5.

Какое наименьшее число одинаковых подарков можно сделать из 320 орехов, 240 конфет, 200 яблок? Сколько орехов, конфет и яблок будет в каждом подарке?

Решение: НОД(320, 240, 200) = 40 (подарков), тогда в каждом подарке будет: 320:40 = 8 (орехов); 240: 40 = 6 (конфет); 200:40 = 5 (яблок).

Ответ: В каждом подарке по 8 орехов, 6 конфет, 5 яблок.

Задача 6.

Два автобуса отправляются от одной площади по разным маршрутам. У одного из автобусов рейс туда и обратно длится 48

57384 не делится на 7, т.к. 573·2=1146, 1146+84=1230, 1230 не делится на 7.

ΙΙΙ. Трехзначное натуральное число вида аbа будет делиться на 7, если а+b делится на 7.

Примеры:

252 делится на 7, т.к. 2+5=7, 7/7.

636 не делится на 7, т.к. 6+3=9, 9 не делится на 7.

IV. Трехзначное натуральное число вида bаа будет делиться на 7, если сумма цифр числа делится на 7.

Примеры:

455 делится на 7, т.к. 4+5+5=14, 14/7.

244 не делится на 7, т.к. 2+4+4=12, 12 не делится на 7.

V. Трехзначное натуральное число вида ааb будет делиться на 7, если 2а-b делится на 7.

Примеры:

882 делится на 7,т.к. 8+8-2=14, 14/7.

996 не делится на 7, т.к. 9+9-6=12, 12 не делится на 7.

VI. Четырехзначное натуральное число вида bаа , где b-двухзначное число, будет делиться на 7, если b+2а делится на 7.

Примеры:

2744 делится на 7, т.к. 27+4+4=35, 35/7.

1955 не делится на 7, т.к. 19+5+5=29, 29 не делится на 7.

VII. Натуральное число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7.

Примеры:

483 делится на 7, т.к. 48-3·2=42, 42/7.

564 не делится на 7, т.к. 56-4·2=48, 48 не делится на 7.

VIII. Натуральное число делится на 7 тогда и только тогда, когда сумма произведений цифр числа на соответствующие остатки получаемые при делении разрядных единиц на число 7, делится на 7.

Примеры:

10׃7=1 (ост 3)

100׃7=14 (ост 2)

1000׃7=142 (ост 6)

10000׃7=1428 (ост 4)

100000׃7=14285 (ост 5)

1000000׃7=142857 (ост 1) и снова повторяются остатки.

Число 1316 делится на 7, т.к. 1· 6 +3· 2 +1· 3 +6=21, 21/7 (6-остаток от деления 1000 на 7; 2-остаток от деления 100 на 7; 3- остаток от деления 10 на 7).

Число 354722 не делится на7,т.к. 3·5+5·4+4·6+7·2+2·3+2=81, 81 не делится на 7(5-остаток от деления 100 000 на 7; 4 -остаток от деления 10 000 на 7; 6-остаток от деления 1000 на 7; 2-остаток от деления 100 на 7; 3-остаток от деления 10 на 7).

Количество подарков должно быть делителем каждого из чисел, выражающих количество апельсинов, конфет и орехов, причем наибольшим из этих чисел. Поэтому надо найти НОД данных чисел. НОД (60, 175, 225) = 15. Каждый подарок будет содержать: 60: 15 = 4 – апельсина, 175: 15 = 11 – орехов и 225: 15 = 15 – конфет.

Ответ: В одном подарке – 4 апельсина, 11 орехов, 15 конфет.

Задача 3: В 9 классе за контрольную работу 1/7 учеников получили пятёрки, 1/3 – четверки, ½ - тройки. Остальные работы оказались неудовлетворительными. Сколько было таких работ?

Решение: Решением задачи должно являться число, кратное числам: 7, 3, 2. Найдем сначала наименьшее из таких чисел. НОК (7, 3, 2) = 42. Можно составить выражение по условию задачи: 42 – (42: 7 + 42: 3 + 42: 2) = 1 – 1 неуспевающий.

Математические отношение отношения задачи допускают, что число учеников в классе 84, 126 и т.д. человек. Но из соображений здравого смысла следует, что наиболее приемлемым ответом является число 42.

Ответ: 1 работа.

Задача 4.

В двух классах вместе 70 учеников. В одном классе 7/17 учеников не явились на занятия, а в другом 2/9 получили отличные отметки по математике. Сколько учеников в каждом классе?

Примеры:

25600 делится на 100, т.к. числа оканчиваются на одинаковое количество нулей.

8975000 делится на 1000, т.к. оба числа оканчиваются на 000.

Задача 1: (Использование общих делителей и НОД)

Ученики 5 «А» класса купили 203 учебника. Каждый купил одинаковое количество книг. Сколько было пятиклассников, и сколько учебников купил каждый из них?

Решение: Обе величины, которые требуется определить должны быть целыми числами, т.е. находиться среди делителей числа 203. Разложив 203 на множители, получаем:

203 = 1 ∙ 7 ∙ 29.

Из практических соображений следует, что учебников не может быть 29. также число учебников не может равняться 1, т.к. в этом случае учеников было бы 203. Значит, пятиклассников – 29 и каждый из них купил по 7 учебников .

Ответ : 29 пятиклассников; 7 учебников

Задача 2 . Имеется 60 апельсинов, 165 орехов и 225 конфет. Какое наибольшее число одинаковых подарков для детей можно сделать из этого запаса? Что войдёт в каждый набор?

Решение:

Признак делимости на 8.

125·8=1 000 ; 242·8=1 936 ; 512·8=4 096 ; 600·8=4 800 ; 1234·8=9 872 ; 122875·8=983 000 ;…

Натуральное ч исло делится на 8 тогда и только тогда, когда три его последние цифры делятся 0 или составляют число, делящееся на 8.

Признаки делимости на 11.

I. Число делится на 11, если разность суммы цифр стоящих на нечетных местах, и суммы цифр, стоящих на четных местах кратна 11.

Разность может быть отрицательным числом или 0, но обязательно должна быть кратной 11. Нумерация идет слева направо.

Пример:

2 1 3 5 7 0 4 2+3+7+4=16, 1+5+0=6, 16-6=10, 10 не кратно 11, значит, это число не делится на 11.

1 3 5 2 7 3 6 1+5+7+6=19, 3+2+3=8, 19-8=11, 11 кратно 11, значит, это число делится на 11.

2 1 3 5 7 0 4 2+3+7+4=16, 1+5+0=6, 16-6=10, 10 не кратно 11, значит, это число не делится на 11.

1 3 5 2 7 3 6 1+5+7+6=19, 3+2+3=8, 19-8=11, 11 кратно 11, значит, это число делится на 11.

II. Натуральное число разбивают справа налево на группы по 2 цифры в каждой и складывают эти группы. Если получаемая сумма кратна 11, то испытуемое число кратно 11.

Пример: Определим, делится ли число 12561714 на 11.

Разобьем число на группы по две цифры в каждой: 12/56/17/14; 12+56+17+14=99, 99 делится на 11, значит, данное число делится на 11.

III. Трехзначное натуральное число делится на 11, если сумма боковых цифр числа равна цифре, которая в середине. Ответ будет состоять из тех самых боковых цифр.

Примеры:

594 делится на11, т.к. 5+4=9, 9-в середине.

473 делится на 11, т.к. 4+3=7, 7- в середине.

861 не делится на 11, т.к. 8+1=9, а в середине 6.

Признак делимости на 12.

Натуральное число делится на 12 тогда и только тогда, когда оно делится на 3 и 4 одновременно.

Примеры:

636 делится на 3 и на 4, значит, оно делится на 12.

587 не делится ни на 3, ни на 4, значит, оно не делится на 12.

27126 делится на 3, но не делится на 4, значит, оно не делится на 12.

Признаки делимости на 37 .

I. Натуральное число делится на 37, если сумма чисел, образованных тройками цифр данного числа в десятичной записи делится соответственно на 37.

Пример: Определим, делится ли число 100048 на 37.

100/048 100+48=148, 148 делится на 37, значит, и число делится на 37.

II. Трехзначное натуральное число, написанное одинаковыми цифрами делится на 37.

Пример:

Числа 111, 222, 333, 444, 555, …делятся на 37.

Признак делимости на 25

Натуральное число делится на 25, если оно оканчивается на 00, 25, 50, 75.

Признак делимости на 50.

На 50 делятся числа: 50, 1 00 , 1 50 , 2 00 , 2 50 , 3 00 ,… Они оканчиваются либо на 50, либо на 00.

Натуральное число делится на 50 тогда и только тогда, когда оканчивается двумя нулями или 50.

Объединенный признак делимости на 10, 100, 1000, …

Если в конце натурального числа стоят столько же нулей сколько в разрядной единице, то это число делится на эту разряд-

ную единицу.

Признаки делимости на 13.

I. Натуральное число делится на 13, если разность числа тысяч и числа, образованного последними тремя цифрами, делится на 13.

Примеры:

Число 465400 делится на 13, т.к. 465 – 400 = 65, 65 делится на 13.

Число 256184 не делится на 13, т.к. 256 – 184 = 72, 72 не делится на 13.

II. Натуральное число делится на 13 тогда и только тогда, когда результат вычитания последней цифры, умноженной на 9, из этого числа без последней цифры, делится на 13.

Примеры:

988 делится на 13, т.к. 98 - 9·8 = 26, 26 делится на 13.

853 не делится на 13, т.к. 85 - 3·9 = 58, 58 не делится на 13.

Признак делимости на 14.

Натуральное число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7 одновременно.

Примеры:

Число 45826 делится на 2, но не делится на 7, значит, оно не делится на 14.

Число 1771 делится на 7, но не делится на 2, значит, оно не делится на 14.

Признак делимости на 15.

Заметим, что 15=3·5. Если натуральное число одновременно делится и на 5 и на 3, то оно делится на 15.

Примеры:

346725 делится на 5 (оканчивается 5) и делится на 3 (3+4+6+7+2+5=24, 24:3), значит, число делится на 15.

48732 делится на 3 (4+8+7+3+2=24, 24:3), но не делится на 5,значит, число не делится на 15.

87565 делится на 5 (оканчивается 5), но не делится на 3 (8+7+5+6+5=31, 31 не делится на 3), значит, число не делится на 15.

Признак делимости на 19.

Натуральное число делится на 19 без остатка тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, делится на 19.

Следует учесть, что число десятков в числе надо считать не цифру в разряде десятков, а общее число целых десятков во всем числе.

Примеры:

153 4 десятков-153, 4·2=8, 153+8=161, 161 не делится на 19,значит, и 1534 не делится на 19.

182 4 182+4·2=190, 190:19, значит, число 1824: 19.


ГБОУ СОШ ж.-д. ст. Погрузная

ПРИЗНАКИ ДЕЛИМОСТИ

НАТУРАЛЬНЫХ

ЧИСЕЛ


Составила Еткарева Алина.


2013 год